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Abstract 

Natural catastrophes including flooding, tornadoes, earthquakes, and wildfires have been 
occurring more frequently over the past few decades as a result of global warming and climate 
change. It is crucial that rescue workers are promptly notified of the location and extent of a 
building's destruction in order to maximise the effectiveness of their efforts. In this study, a 
potential deep learning-based method is put forth for identifying damaged buildings in high-
resolution satellite photos. It solves the issue of limited training data common in many remote 
sensing applications by using generic data augmentation. It is suggested that a pretrained model 
be used in conjunction with transfer learning as a fine-tuning method for the relevant task. The 
trials with images of Port-au-Prince, Haiti showed that the suggested strategy works well with 
sparse training data. With enriched training data, the Convolutional Neural Network (CNN) 
model can detect damaged buildings with an accuracy of 83%, compared to only 53% with the 

original training data.  
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1   Introduction 

Since the First World War, when cameras were mounted on monoplanes, remote 

sensing for disaster management has advanced [1]. Natural catastrophes including 

flooding, tornadoes, earthquakes, and wildfires have been occurring more frequently 

over the past few decades as a result of global warming and climate change. The 
United States Geological Survey reports that between 2000 and 2012, there were 807 

earthquakes in the United States that were greater than magnitude 5.0, and there were 

23,608 earthquakes globally that resulted in an estimated 789,677 fatalities. It is, 

therefore, very important to give quick response to workers which provides accurate 

and timely information to help them to prevent themselves effectively. used an 

estimated $125 billion in damages in Texas [2]. Remote sensing data, due to its 

widespread coverage, cost-effectiveness, and regular updates, emerged as one of the 

most economical and precise data sources for assessing the approximately 250,000 
residential and 30,000 commercial buildings affected by the Haiti earthquake [3]. 
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Many studies have used satellite and aircraft imagery to assure damaged structures. 

A research project explored the use of both manned and un-manned multi-resolution 

satellite and air-borne photography. By a successful implementation method based on 

con-volutional neural networks, the research successfully attained an accuracy 
ranging from 89.8% to 94.4% in the identifying and classifying damage in building 

[4]. In another investigation that focused on the aftermath of the Bam Earth-quake in 

“Iran”, “Janalipour” and “Mohammadzadeh” conducted a 4-stage process utilizing 

Quick-Bird satellite photos to pinpoint damaged structures. Initially it updated a 

vector-map with pre-event photos, geo-referencing a post-event image using the 

revised vector-map, and classifying and segmenting the post-event image based on 

pixels. After that, the segments were labeled, and various geometric propertieswere 
determined. Finally a decision-making system based on the ANFIS (adaptive 

network-based fuzzy inference system) was created, a hybrid learning technique 

combining fuzzy logic with neural-networks [5][6]. 

 Larger areas of land can be gathered by satellites in a single path. The position of 

the satellite is a significant barrier for the collection of satellite data. If the satellite 

doesn't pass directly over the affected area, it will need to be directed there. Large 

acquisition angles from a satellite location may result in image distortion, poor 

georeferencing, and a user's inability to co-register the imagery with other significant 
data sets [7]. 

Response time, analysis depth, and mapping accuracy must all be compromised in 

a scenario with a short time period [8]. While high resolution data may be too large to 

analyse for a vast region, sub-meter imagery is frequently employed for assessment 

[9-10]. However, it is normal practise to immediately create a preliminary damage 

assessment map using the existing data, and subsequently the first estimates are 

improved using new information [10]. Social media data can help with situational 

awareness, rescue and relief efforts, and timely damage information [11]. The diverse 
character of the data, which exceeds the capabilities of the human analyst when 

dealing with social media data, is one of the biggest obstacles [11-12]. The first 

analysis of remote sensing data may be degraded due to the rapid requirement for 

damage information during a natural catastrophe, and more time will be required to 

undertake a more thorough analysis [13]. 

 

2   Literature Review 

There are still two major obstacles to picture classification for damage assessment: 

the accessibility of data sources and the prompt collection of precise and useful data. 

This section reviews recent work that addresses these issues, from basic pixel-based 

solutions to cutting-edge deep learning techniques. 
Pixel-based methods rely on the surface features' spectral properties in multiple or 

hyperspectral pictures. The simplest unit of analysis for images is the pixel. A pixel-

based technique primarily uses pixels without taking into account their geographical 

environment. In order to analyse a single pixel in a picture made up of potentially 

thousands or millions of pixels, statistical operators are used [14]. Unsupervised 



classification and supervised classification are the two general categories into which 

pixel-based classification may be divided [15]. Unsupervised categorization divides 

an image's pixels into various classes according to their natural grouping. Without the 

aid of any training data or prior knowledge of the subject area, this procedure is 
carried out [16]. The Iterative Self-Organizing Data Analysis (ISODATA) technique 

and the k-means (and its variants) algorithm are two of the most popular algorithms 

[16-17]. The pixel spectral pattern 10 vector is to be classified into one of several 

classes using ISODATA. Similar algorithms like the k-means algorithm use 

additional heuristics to decide whether to split or combine groups. The method will 

separate a cluster if its variance is larger than a predetermined threshold. If not, the 

clusters will be merged [18-19]. A person must be in charge of supervised 
classification. 

Object-based image categorization operates on homogeneous and spatially 

contiguous collections of pixels, or objects, rather than on individual pixels [20]. Pixel 

grouping is accomplished using an image segmentation procedure that, according to 

Haralick and Shapiro [21], may be divided into three main categories: spatial 

clustering, thresholding, and region growth. The ideal technique to assess the 

effectiveness of segmentation is for the human analyst to interpret the results (Estoque 

et al., 2015; Pal & Pal, 1993) because the accuracy of the image segmentation directly 
affects the image categorization [22]. A majority decision determines how an object is 

categorised based on the labels of its k closest neighbours. The procedure performs a 

Euclidean distance computation when the majority votes are tied and the object might 

belong to either of the two classes. When used with multimodal classes, KNN 

performs well. However, it makes categorization errors because it compares all the 

features equally [23]. Several studies have shown that object-based classifiers 

outperform pixel-based ones in terms of performance. In order to compare the MLC 

and KNN algorithms, Platt and Rapoza (Platt & Rapoza, 2008) used models that both 
included and excluded expert knowledge. They demonstrated that the best pixel-based 

strategy only managed an accuracy of 64%, while the object-based model employing 

the KNN algorithm plus expert knowledge produced the best accuracy results of 78%. 

[24] used QuickBird imagery to categorise urban land cover and compared MLC with 

KNN. On their original image, they achieved 90.4% accuracy with their KNN 

classifier and 63.3% accuracy with their pixel-based MLC classifier. They 

experimented with applying the same categorization techniques to a different image 

with various environmental factors. The pixel-based classifier in this instance had a 
significantly higher classification accuracy of 87.8%. 

The Support Vector Machine (SVM) algorithm can only categorise data into two 

unique classes in its initial form, which makes it a two-class classification algorithm. 

It creates a high dimensional feature space from the input vectors. A hyperplane with 

qualities that guarantee the network's excellent generalisation ability is generated in 

this feature space [24]. It shows how the ideal separating hyperplane separates the 

data set 15 into discrete numbers of classes while minimising misclassification 

acquired during the training phase. [25] The use of a linear SVM assumes that the 
feature data can be separated linearly. However, in fact, data points from several 

classes frequently cross paths, rendering the fundamental linear decision limits 

inadequate. Consequently, kernel functions have been created [25]. 



With accuracy rates of 96.8% and 96.2%, respectively, the SVM algorithm 

performed somewhat better than the Bayesian classifier.  

(ANN) is based on how the brain's neural networks are organised [25]. A typical 

neural network is made up of numerous straightforward, interconnected neurons, each 
of which generates a series of activations. Sensors that perceive the environment 

through weighted connections from previously engaged neurons trigger these neurons. 

The feedforward neural network was the first and most basic type of network. 

In many applications involving object recognition, CNNs are quickly becoming a 

promising technology. Local receptive fields, shared weights, and spatial or temporal 

subsampling are three architectural concepts that CNNs combine. CNNs have several 

interconnected, multi-layered channels that are very capable of learning new features 
and classifiers. Additionally, they have the ability to simultaneously classify and 

change settings. Furthermore, this kind of ANN has the capacity to automatically 

embed both spectral and spatial data into the classification. 

 

3   CNN'S INSIDE FOR DAMAGE DETECTION 

In order to perform better than existing methods for damage identification using 

high-resolution satellite photos, CNN models that have been fine-tuned are adapted to 
computer vision datasets. Transfer learning, also known as the refining of models, is 

the application of learnt skills to a new situation. As a result, the goal of this work is 

to improve the ResNet152 model, one of most popular backbone framework in 

computer vision-related designs, so that it can more accurately distinguish between 

damaged and undamaged structures on satellite images. The ResNet34 and ResNet50 

models, as well as additional ResNet models with different depths, were compared to 

this model. ResNet152 was selected because, when evaluated on the same sample set, 

it provided the best testing accuracy. Additionally, it is not by design that deeper 
ResNet models have lower training accuracy than their steeper counterpart. The four 

main steps of the suggested technique are depicted in Figure 1. After the landsat 

images has been pre-processed, the procedure begins by preparing the data by 

obtaining training data for the job of relevance (i.e., building footprints and manually 

labelling them as "Damaged" or "No Damage") (atmospheric correction and 

orthorectification). 

 



    

 

   Fig.1. Methodology 

 

Then, training, validation, and testing data are sorted into their respective 
categories. The next step is model fine-tuning, which adjusts the classification layers 

of the current architecture and trains the neural network's filter weights. Finally, 

metrics will be used to judge the output accuracy of the improved classifier. 

 

4   IMPLEMENTATION 

The effectiveness of the suggested strategy is illustrated in this section. The Jupyter 
Notebook environment has been used to implement the experiments. After the 

magnitude 7.0 Haitian earthquake of January 12, 2010, Maxar Technologies provided 

WorldView-2 (WV2) satellite imagery of Port-au-Prince, Haiti. It is freely accessible 

through the Maxar open data initiative and has a spatial resolution of 1.84 metres 

(Satellite Imaging Corporation, n.d.). The red, green, and blue bandwidths of four 

photos that have been plaid together to form the data each include three bands. The 

World Bank, the European Commission (EC), the Operational Satellite Applications 

Programme (UNOSAT), and the United Nations Institute for Training and Research 
(UNITAR) Joint Research Centre (JRC) collaborated to produce the Disaster 

Response Needs Assessment and Recovery Framework and ground truth data was 

gathered from these products. 

Based on the ground truth information, building footprints were manually 

categorised as "Damage" or "No Damage" after being recovered from the WV2 

satellite picture. They were divided into 93 testing samples, 322 training samples, and 

46 validation samples at random. Figure 2 displays the locations of these sample 

datasets for each category. These locations were picked because 1) comprehensive 
building damage information is available to the public and 2) the buildings there are 

typical of the Port-au-Prince commune in terms of size, height, and structure. 

Satellite 

Imagery 
Train Data Fine Tuning Classifier 

Outputs 

Pre-Train 

CNN 



 

 

 
Fig.2. (Orange - training, yellow - validation, red - testing A, blue - testing B) Data 

locations and classifications. 

 

The collected 322 training examples were used to first perfect the ResNet152 

model. With the enhanced training samples (training+) produced by the rotation 

transformation, a second experiment was carried out. The zero-padded training 
images that were taken from the WV2 satellite imagery were used in both tests. Each 

of these 322 buildings was rotated 72 degrees constantly until 360 degrees, as 

illustrated in Figure 3, as part of the data augmentation (DA) process, which increased 

the training data 41 by a factor of five. 

 



 
Fig.3. The top-left image is the WV2 satellite's original image, and the boundary 

was used to extract the image chip. The extracted and padded image may be seen in 

the upper middle image. The further photos display the DA outcomes through a series 

of 72-degree rotations. 

 

The quantity of labelled sample data used for each stage of the process is 

summarised in Table 1. The ResNet152 classifier's weights are fitted using training 

data, which is also used to learn how the process works. The ResNet152 classifier's 
parameters can be adjusted with the help of validation data, which can also be used to 

check whether the training data is adequate, for instance. The performance of the 

completely trained classifier, the final model, is next evaluated using the testing data. 

 

Table 1 Summary of sample for fine tuning 

Sample Types Total Damage No Damage 

Training 

(Original)  

322 182 140 

Training+ (after 

DA) 

1610 910 700 

Validation 46 26 20 

Testing 93 53 40 

 

Preventing a model from being either overfitted or underfitted is a crucial aspect of 

machine learning. The aim of training is to achieve 0% validation loss. However, 

overfitting is suggested if the validation loss is more than the training loss, and 

underfitting is indicated when the reverse is true. Robust fitting is achieved if the 

validation loss and the training loss are equal (Brownlee, 2019b). The use of an 



approach known as "early stopping" was made. The validation loss stops improving 

for five consecutive epochs at 43 using the early stopping technique, at which point 

the model is finished being trained. The model was trained for a total of 20 epochs, as 

shown in Table 2, but due to early stopping, it ceased improving validation loss on the 
15th epoch. The model was trained for 6 epochs only while using the original training 

data in testing. Therefore, the 20-epoch DA comparison is made to the six founding 

training data result in order for the two studies to have a consistent framework of 

early ending. The outcomes of the ResNet152 model epochs comparing the initial 

training data to the training+ data are displayed in Figure 4. 

  

 
Table 2 Training return for the DA model demonstrating training and validation 

loss 

Epoch train_loss valid_loss Accuracy time 

1 1.042376 0.903653 0.515528 0:36 

2 0.936403 0.731321 0.720497 0:23 

3 0.874362 0.575533 0.770186 0:21 

4 0.783001 0.508756 0.776398 0:21 

5 0.767506 0.537253 0.782609 0:21 

6 0.751107 0.613045 0.782609 0:21 

7 0.729267 0.525315 0.751553 0:21 

8 0.694654 0.46184 0.807453 0:21 

9 0.660684 0.433513 0.807453 0:21 

10 0.653519 0.441762 0.801242 0:21 

11 0.605963 0.488908 0.813665 0:21 

12 0.583887 0.500495 0.782609 0:21 

13 0.562885 0.400379 0.819876 0:21 

14 0.534634 0.310225 0.869565 0:21 

15 0.523058 0.288835 0.850932 0:21 

16 0.521369 0.366022 0.826087 0:21 

17 0.498879 0.51325 0.807453 0:21 

18 0.474929 0.376632 0.832298 0:21 

19 0.440805 0.320855 0.869565 0:21 

20 0.406367 0.316084 0.863354 0:21 

 



 
Fig. 4. DA vs. Original Training Epoch Results Comparison 

 

According to the graph, the validation loss for the DA model is lowest at the 15th 

epoch, which is the desired outcome; nevertheless, the gap between validation loss 

and training loss at that time is one of the largest in the model. Validation loss has 

maximized at this time even though it is still larger than training loss by.01 at the 17th 
epoch. Due to early halting, the model terminates at the 20th epoch. It is the epoch 

with the second-lowest difference and a region with the third-lowest validation loss. 

There is a difference of.09 between validation and training at this time. 

The ideal model is one that uses the initial random result of 20 epochs with the 

training+ data. The 20-epoch model can be trained in a much less amount of time. 20 

epochs were trained in 7.27 minutes on training+ photos as opposed to 34 and 50 

epochs in 12.48 and 18.37 minutes, respectively. Second, even with the modest 

validation loss taken into account, the training and validation losses were the closest 

at 20 iterations. Thirdly, the early halting feature will improve generalisation for yet-

to-occur situations by preventing overfitting as well as overfitting (Brownlee, 2019a). 

The 34 and 50-epoch approaches only slightly outperform the 20, 34, and 50-epoch 
model in terms of accuracy, but at the expense of a large amount of time. 

 

4   RESULTS 

Figure 5 compares the outcomes of the two studies as well as the accuracy of 

training, validation, and testing. The training, validation, and testing accuracy are 

92%, 85%, and 83%, respectively, when DA is applied to the training images. The 

training, validation, and testing accuracies using the initial training data are 50%, 

43%, and 53%, respectively. The DA accuracies are, on average, 38% more accurate 

than the model using the original training samples.  



 
Fig.5. Analyzing the statistics from the original model and the DA. 

 
When analysing the damage and no damage accuracies from the conventional 

training data and training+ data, there is also an aggregate of a 33% and a 46% 

increased accuracy result, respectively. The recall evaluation for damage and no 

damage both demonstrate improvement for the DA result, rising by an average of 

29% and 49%, respectively. The test for classifying damaged buildings is more 
accurate than the test for classifying non-damaged structures when the F1 score, 

which is a measure of test accuracy, is taken into account for all tests. The F1 score 

also reveals that the two models' average difference ranges from 31% for damage to 

47% for no damage. The model with DA has, on average,.78 more inter-relatability 

than the original model, according to Cohen's Kappa, a measurement of the inter-

relatability here between prediction classes and regression coefficients classes. Last 

but not least, MCC values can range from -1 to 1, with -1 denoting the greatest 

possible discrepancy between prediction and classification algorithm, 0 denoting 

randomness in the model, and 1 denoting the model's flawless prediction. The model 

with DA performs significantly better than the model with original samples, as shown 

by the MCC score average of.72 for the model with DA and -.06 for the model with 
original training data. 

The first testing data set, designated as "Testing A," is produced at random. The 

other is the brand-new set, known as "Testing B," which is used to evaluate the 

model's capacity for generalisation. According to Figure 6, Testing B consists of 189 

samples drawn from seven city blocks. These samples are neither dispersed across a 

wide area nor sparsely sampled, in contrast to the 93 samples gathered for Testing A. 

Furthermore, the Testing B examples have much smaller building footprints. Table 3 

demonstrates that, on average, the samples gathered for Testing 49 B are much 

smaller than the samples gathered for training in Testing A. 

 



 
Fig.6. A test of sample B. Ones with damage are shown in red, whereas unharmed 

buildings are shown in blue. 

 

 

Testing B's accuracy was assessed to be 63%, while Testing A's accuracy was 83%. 

Precision, or the percentage of accurate damage or no damage forecasts, came out to 

be 50% and 80%, respectively. In comparison to Testing A's 85%, the damage 

precision is only 50%. But interestingly, the classification of no harm for Testing A 

and Testing B was discovered to be the same, 80%. 

According to the recall metrics for Testing A and Testing B, 85% and 76%, 

respectively, of actual positives (also known as ground truth positives or "Damage"), 

or correct identifications, are found. Comparing Testing A and Testing B, the recall 
was calculated to be 80% and 55%, respectively, for the no damage categorization. 

Damage from both testing areas had a better recall than no damage. For the 

classification of damaged buildings in Testing A and Testing B, the F1 score, which is 

a gauge of the model's robustness and precision, came out to be 85% and 60%, 

respectively. 

 

Table 3 Building footprint sizes are compared 

Area (sqm) Training Testing A Testing B 

Average 291.7 360.1 197.0 

Median 197.0 200.0 150.3 

Min 30.1 18.9 33.1 

Max 2058.0 1912.2 1092.7 

 

Additionally, it displays an F1 score of 80% and 65% for no damage. These 

measurements demonstrate that the trained ResNet152 model is not robust enough to 
generalise on new examples. Finally, testing A performs much better than testing b 

according to Cohen's Kappa and the Matthews Correlation Coefficient. The degree to 

which the forecast and the ground truth labels agree is shown by Cohen's Kappa. 

Cohen's Kappa for Testing A is.65, but Kappa for Testing B is.28. The MCC is a 

measurement of the correlation between the predicted binary classification and the 



ground truth. Testing B scored.30, whereas Testing A obtained a rating of.65. The 

association between the actual truth and predicted classifiers is more erratic according 

to Testing B's MCC value of.30 than it is according to Testing A's MCC value. 

 

 
Fig.7. Comparison of Testing A and Testing B Results 

 

There are a few reasons why the trained ResNet152 model's generalisation 

performance is relatively poor. The size of Testing B's building footprint in 

comparison to the footprints of the training buildings is one of the considerations. 
According to Table 5 above, the average building footprint area for Testing B is 197.0 

sqm, whereas it is 291.7 sqm for training and 360.1 sqm for Testing A. The tiny area 

of the Testing B footprints could significantly affect the generalisation findings since 

the smaller textures provided would leave the model with less features to classify. The 

broken construction texture, which is particularly evident in the precision scores, is a 

contributing factor to the generally subpar generalisation performance. The no 

damage building footprints were taken from structures that had sustained no damage; 

hence, whether the buildings are from Testing A or Testing B, their rooftops are 

largely comparable throughout the area in the satellite image. Consequently, the 

accuracy rate for the no damage categorization is nearly the same, at 80%. 

4   CONCLUSIONS AND FUTURE WORK 

The training set can be artificially increased while keeping labels intact using the 

suggested generic data augmentation based on geometric transformation. The DA 

technique further improves CNN performance and prevents overfitting, as shown by 

the studies. Additionally, a transfer learning fine-tuning technique is suggested, which 



modifies the high-level layers of the pre-trained ResNet152 model while leaving the 

low-level layers untouched. Results show that pre-trained architectures are extremely 

effective and produce viable classification (85% and 80% in Testing A precision and 

recall for classifying damaged and no-damaged buildings, respectively), even though 

they are not pre-trained on the application of this work (i.e., damaged or no-damaged 
buildings). The success of our strategy is further demonstrated by the fact that the 

fine-tuning process converged after 20 epochs of training rounds where the validation 

loss is near to the training loss. 

Future research would concentrate on examining model generalisation strategies, 

labelling training data, and automating approaches for extracting building footprints. 

There is no question that a larger training dataset would enhance model performance 

even further. Manual extraction, however, is time-consuming, expensive, and 

difficult. Building detection ML models, such as Ren et alFast-RCNN, .'s have been 

created to recognise buildings from high resolution satellite photos. Automating their 

labelling continues to be a challenge. The task of model generalisation is challenging. 

Research should continue on methods to strengthen the model's resistance to data 

errors. For instance, further data augmentation methods must to be researched and 
used in the process of fine-tuning. 
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